[USN-6331-1] Linux kernel (Azure) vulnerabilities
==========================================================================
Ubuntu Security Notice USN-6331-1
August 31, 2023
linux-azure vulnerabilities
==========================================================================
A security issue affects these releases of Ubuntu and its derivatives:
- Ubuntu 20.04 LTS
Summary:
Several security issues were fixed in the Linux kernel.
Software Description:
- linux-azure: Linux kernel for Microsoft Azure Cloud systems
Details:
It was discovered that the netlink implementation in the Linux kernel did
not properly validate policies when parsing attributes in some situations.
An attacker could use this to cause a denial of service (infinite
recursion). (CVE-2020-36691)
Billy Jheng Bing Jhong discovered that the CIFS network file system
implementation in the Linux kernel did not properly validate arguments to
ioctl() in some situations. A local attacker could possibly use this to
cause a denial of service (system crash). (CVE-2022-0168)
It was discovered that the ext4 file system implementation in the Linux
kernel contained a use-after-free vulnerability. An attacker could use this
to construct a malicious ext4 file system image that, when mounted, could
cause a denial of service (system crash). (CVE-2022-1184)
It was discovered that some AMD x86-64 processors with SMT enabled could
speculatively execute instructions using a return address from a sibling
thread. A local attacker could possibly use this to expose sensitive
information. (CVE-2022-27672)
Daniel Moghimi discovered that some Intel(R) Processors did not properly
clear microarchitectural state after speculative execution of various
instructions. A local unprivileged user could use this to obtain to
sensitive information. (CVE-2022-40982)
William Zhao discovered that the Traffic Control (TC) subsystem in the
Linux kernel did not properly handle network packet retransmission in
certain situations. A local attacker could use this to cause a denial of
service (kernel deadlock). (CVE-2022-4269)
It was discovered that a race condition existed in the qdisc implementation
in the Linux kernel, leading to a use-after-free vulnerability. A local
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2023-0590)
It was discovered that a race condition existed in the btrfs file system
implementation in the Linux kernel, leading to a use-after-free
vulnerability. A local attacker could use this to cause a denial of service
(system crash) or possibly expose sensitive information. (CVE-2023-1611)
It was discovered that the APM X-Gene SoC hardware monitoring driver in the
Linux kernel contained a race condition, leading to a use-after-free
vulnerability. A local attacker could use this to cause a denial of service
(system crash) or expose sensitive information (kernel memory).
(CVE-2023-1855)
It was discovered that the ST NCI NFC driver did not properly handle device
removal events. A physically proximate attacker could use this to cause a
denial of service (system crash). (CVE-2023-1990)
Tavis Ormandy discovered that some AMD processors did not properly handle
speculative execution of certain vector register instructions. A local
attacker could use this to expose sensitive information. (CVE-2023-20593)
It was discovered that the XFS file system implementation in the Linux
kernel did not properly perform metadata validation when mounting certain
images. An attacker could use this to specially craft a file system image
that, when mounted, could cause a denial of service (system crash).
(CVE-2023-2124)
It was discovered that the SLIMpro I2C device driver in the Linux kernel
did not properly validate user-supplied data in some situations, leading to
an out-of-bounds write vulnerability. A privileged attacker could use this
to cause a denial of service (system crash) or possibly execute arbitrary
code. (CVE-2023-2194)
It was discovered that a race condition existed in the TLS subsystem in the
Linux kernel, leading to a use-after-free or a null pointer dereference
vulnerability. A local attacker could use this to cause a denial of service
(system crash) or possibly execute arbitrary code. (CVE-2023-28466)
It was discovered that the DA9150 charger driver in the Linux kernel did
not properly handle device removal, leading to a user-after free
vulnerability. A physically proximate attacker could use this to cause a
denial of service (system crash) or possibly execute arbitrary code.
(CVE-2023-30772)
It was discovered that the btrfs file system implementation in the Linux
kernel did not properly handle error conditions in some situations, leading
to a use-after-free vulnerability. A local attacker could possibly use this
to cause a denial of service (system crash). (CVE-2023-3111)
It was discovered that the Ricoh R5C592 MemoryStick card reader driver in
the Linux kernel contained a race condition during module unload, leading
to a use-after-free vulnerability. A local attacker could use this to cause
a denial of service (system crash) or possibly execute arbitrary code.
(CVE-2023-3141)
It was discovered that the Qualcomm EMAC ethernet driver in the Linux
kernel did not properly handle device removal, leading to a user-after free
vulnerability. A physically proximate attacker could use this to cause a
denial of service (system crash) or possibly execute arbitrary code.
(CVE-2023-33203)
It was discovered that the universal 32bit network packet classifier
implementation in the Linux kernel did not properly perform reference
counting in some situations, leading to a use-after-free vulnerability. A
local attacker could use this to cause a denial of service (system crash)
or possibly execute arbitrary code. (CVE-2023-3609)
It was discovered that the Quick Fair Queueing network scheduler
implementation in the Linux kernel contained an out-of-bounds write
vulnerability. A local attacker could use this to cause a denial of service
(system crash) or possibly execute arbitrary code. (CVE-2023-3611)
It was discovered that the network packet classifier with
netfilter/firewall marks implementation in the Linux kernel did not
properly handle reference counting, leading to a use-after-free
vulnerability. A local attacker could use this to cause a denial of service
(system crash) or possibly execute arbitrary code. (CVE-2023-3776)
Update instructions:
The problem can be corrected by updating your system to the following
package versions:
Ubuntu 20.04 LTS:
linux-image-5.4.0-1114-azure 5.4.0-1114.120
linux-image-azure-lts-20.04 5.4.0.1114.107
After a standard system update you need to reboot your computer to make
all the necessary changes.
ATTENTION: Due to an unavoidable ABI change the kernel updates have
been given a new version number, which requires you to recompile and
reinstall all third party kernel modules you might have installed.
Unless you manually uninstalled the standard kernel metapackages
(e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual,
linux-powerpc), a standard system upgrade will automatically perform
this as well.
References:
https://ubuntu.com/security/notices/USN-6331-1
CVE-2020-36691, CVE-2022-0168, CVE-2022-1184, CVE-2022-27672,
CVE-2022-40982, CVE-2022-4269, CVE-2023-0590, CVE-2023-1611,
CVE-2023-1855, CVE-2023-1990, CVE-2023-20593, CVE-2023-2124,
CVE-2023-2194, CVE-2023-28466, CVE-2023-30772, CVE-2023-3111,
CVE-2023-3141, CVE-2023-33203, CVE-2023-3609, CVE-2023-3611,
CVE-2023-3776
Package Information:
https://launchpad.net/ubuntu/+source/linux-azure/5.4.0-1114.120
A Linux kernel (Azure) security update has been released for Ubuntu Linux 20.04 LTS.