Ubuntu 6581 Published by

A Linux kernel (Intel IoTG) security update has been released for Ubuntu Linux 22.04 LTS.



[USN-6445-1] Linux kernel (Intel IoTG) vulnerabilities


==========================================================================
Ubuntu Security Notice USN-6445-1
October 19, 2023

linux-intel-iotg vulnerabilities
==========================================================================

A security issue affects these releases of Ubuntu and its derivatives:

- Ubuntu 22.04 LTS

Summary:

Several security issues were fixed in the Linux kernel.

Software Description:
- linux-intel-iotg: Linux kernel for Intel IoT platforms

Details:

It was discovered that the IPv6 implementation in the Linux kernel
contained a high rate of hash collisions in connection lookup table. A
remote attacker could use this to cause a denial of service (excessive CPU
consumption). (CVE-2023-1206)

Daniel Trujillo, Johannes Wikner, and Kaveh Razavi discovered that some AMD
processors utilising speculative execution and branch prediction may allow
unauthorised memory reads via a speculative side-channel attack. A local
attacker could use this to expose sensitive information, including kernel
memory. (CVE-2023-20569)

It was discovered that the IPv6 RPL protocol implementation in the Linux
kernel did not properly handle user-supplied data. A remote attacker could
use this to cause a denial of service (system crash). (CVE-2023-2156)

Davide Ornaghi discovered that the DECnet network protocol implementation
in the Linux kernel contained a null pointer dereference vulnerability. A
remote attacker could use this to cause a denial of service (system crash)
or possibly execute arbitrary code. Please note that kernel support for the
DECnet has been removed to resolve this CVE. (CVE-2023-3338)

Ross Lagerwall discovered that the Xen netback backend driver in the Linux
kernel did not properly handle certain unusual packets from a
paravirtualized network frontend, leading to a buffer overflow. An attacker
in a guest VM could use this to cause a denial of service (host system
crash) or possibly execute arbitrary code. (CVE-2023-34319)

Chih-Yen Chang discovered that the KSMBD implementation in the Linux kernel
did not properly validate command payload size, leading to a out-of-bounds
read vulnerability. A remote attacker could possibly use this to cause a
denial of service (system crash). (CVE-2023-38432)

It was discovered that the NFC implementation in the Linux kernel contained
a use-after-free vulnerability when performing peer-to-peer communication
in certain conditions. A privileged attacker could use this to cause a
denial of service (system crash) or possibly expose sensitive information
(kernel memory). (CVE-2023-3863)

Laurence Wit discovered that the KSMBD implementation in the Linux kernel
did not properly validate a buffer size in certain situations, leading to
an out-of-bounds read vulnerability. A remote attacker could use this to
cause a denial of service (system crash) or possibly expose sensitive
information. (CVE-2023-3865)

Laurence Wit discovered that the KSMBD implementation in the Linux kernel
contained a null pointer dereference vulnerability when handling handling
chained requests. A remote attacker could use this to cause a denial of
service (system crash). (CVE-2023-3866)

It was discovered that the Siano USB MDTV receiver device driver in the
Linux kernel did not properly handle device initialization failures in
certain situations, leading to a use-after-free vulnerability. A physically
proximate attacker could use this cause a denial of service (system crash).
(CVE-2023-4132)

Andy Nguyen discovered that the KVM implementation for AMD processors in
the Linux kernel with Secure Encrypted Virtualization (SEV) contained a
race condition when accessing the GHCB page. A local attacker in a SEV
guest VM could possibly use this to cause a denial of service (host system
crash). (CVE-2023-4155)

It was discovered that the TUN/TAP driver in the Linux kernel did not
properly initialize socket data. A local attacker could use this to cause a
denial of service (system crash). (CVE-2023-4194)

Bien Pham discovered that the netfiler subsystem in the Linux kernel
contained a race condition, leading to a use-after-free vulnerability. A
local user could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2023-4244)

Maxim Suhanov discovered that the exFAT file system implementation in the
Linux kernel did not properly check a file name length, leading to an out-
of-bounds write vulnerability. An attacker could use this to construct a
malicious exFAT image that, when mounted and operated on, could cause a
denial of service (system crash) or possibly execute arbitrary code.
(CVE-2023-4273)

Kyle Zeng discovered that the networking stack implementation in the Linux
kernel did not properly validate skb object size in certain conditions. An
attacker could use this cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2023-42752)

Kyle Zeng discovered that the netfiler subsystem in the Linux kernel did
not properly calculate array offsets, leading to a out-of-bounds write
vulnerability. A local user could use this to cause a denial of service
(system crash) or possibly execute arbitrary code. (CVE-2023-42753)

Kyle Zeng discovered that the IPv4 Resource Reservation Protocol (RSVP)
classifier implementation in the Linux kernel contained an out-of-bounds
read vulnerability. A local attacker could use this to cause a denial of
service (system crash). Please note that kernel packet classifier support
for RSVP has been removed to resolve this vulnerability. (CVE-2023-42755)

Kyle Zeng discovered that the netfilter subsystem in the Linux kernel
contained a race condition in IP set operations in certain situations. A
local attacker could use this to cause a denial of service (system crash).
(CVE-2023-42756)

Thelford Williams discovered that the Ceph file system messenger protocol
implementation in the Linux kernel did not properly validate frame segment
length in certain situation, leading to a buffer overflow vulnerability. A
remote attacker could use this to cause a denial of service (system crash)
or possibly execute arbitrary code. (CVE-2023-44466)

Bing-Jhong Billy Jheng discovered that the Unix domain socket
implementation in the Linux kernel contained a race condition in certain
situations, leading to a use-after-free vulnerability. A local attacker
could use this to cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2023-4622)

Budimir Markovic discovered that the qdisc implementation in the Linux
kernel did not properly validate inner classes, leading to a use-after-free
vulnerability. A local user could use this to cause a denial of service
(system crash) or possibly execute arbitrary code. (CVE-2023-4623)

Alex Birnberg discovered that the netfilter subsystem in the Linux kernel
did not properly validate register length, leading to an out-of- bounds
write vulnerability. A local attacker could possibly use this to cause a
denial of service (system crash). (CVE-2023-4881)

It was discovered that the Quick Fair Queueing scheduler implementation in
the Linux kernel did not properly handle network packets in certain
conditions, leading to a use after free vulnerability. A local attacker
could use this to cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2023-4921)

Kevin Rich discovered that the netfilter subsystem in the Linux kernel did
not properly handle removal of rules from chain bindings in certain
circumstances, leading to a use-after-free vulnerability. A local attacker
could possibly use this to cause a denial of service (system crash) or
execute arbitrary code. (CVE-2023-5197)

Update instructions:

The problem can be corrected by updating your system to the following
package versions:

Ubuntu 22.04 LTS:
linux-image-5.15.0-1043-intel-iotg 5.15.0-1043.49
linux-image-intel-iotg 5.15.0.1043.43

After a standard system update you need to reboot your computer to make
all the necessary changes.

ATTENTION: Due to an unavoidable ABI change the kernel updates have
been given a new version number, which requires you to recompile and
reinstall all third party kernel modules you might have installed.
Unless you manually uninstalled the standard kernel metapackages
(e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual,
linux-powerpc), a standard system upgrade will automatically perform
this as well.

References:
https://ubuntu.com/security/notices/USN-6445-1
CVE-2023-1206, CVE-2023-20569, CVE-2023-2156, CVE-2023-3338,
CVE-2023-34319, CVE-2023-38432, CVE-2023-3863, CVE-2023-3865,
CVE-2023-3866, CVE-2023-4132, CVE-2023-4155, CVE-2023-4194,
CVE-2023-4244, CVE-2023-4273, CVE-2023-42752, CVE-2023-42753,
CVE-2023-42755, CVE-2023-42756, CVE-2023-44466, CVE-2023-4622,
CVE-2023-4623, CVE-2023-4881, CVE-2023-4921, CVE-2023-5197

Package Information:
https://launchpad.net/ubuntu/+source/linux-intel-iotg/5.15.0-1043.49